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Abstract

Many situations in complex systems require quantitative estimates of the lack of information in one probability dis-

tribution relative to another. In short term climate and weather prediction, examples of these issues might involve the

lack of information in the historical climate record compared with an ensemble prediction, or the lack of information in

a particular Gaussian ensemble prediction strategy involving the first and second moments compared with the non-

Gaussian ensemble itself. The relative entropy is a natural way to quantify the predictive utility in this information,

and recently a systematic computationally feasible hierarchical framework has been developed. In practical systems

with many degrees of freedom, computational overhead limits ensemble predictions to relatively small sample sizes.

Here the notion of predictive utility, in a relative entropy framework, is extended to small random samples by the def-

inition of a sample utility, a measure of the unlikeliness that a random sample was produced by a given prediction strat-

egy. The sample utility is the minimum predictability, with a statistical level of confidence, which is implied by the data.

Two practical algorithms for measuring such a sample utility are developed here. The first technique is based on the

statistical method of null-hypothesis testing, while the second is based upon a central limit theorem for the relative

entropy of moment-based probability densities. These techniques are tested on known probability densities with param-

eterized bimodality and skewness, and then applied to the Lorenz �96 model, a recently developed ‘‘toy’’ climate model

with chaotic dynamics mimicking the atmosphere. The results show a detection of non-Gaussian tendencies of predic-

tion densities at small ensemble sizes with between 50 and 100 members, with a 95% confidence level.
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1. Introduction

Complex systems with many spatial degrees of freedom arise in environmental science in diverse con-

texts such as atmosphere/ocean general circulation models (GCMs) for climate or weather prediction,

pollution models, and models for the spread of hazardous biological, chemical, or nuclear plumes, as well
as biological molecular dynamics, complex microfluids, etc. These nonlinear models are intrinsically cha-

otic over many time scales with sensitive dependence on initial conditions. Given both the uncertainty in

a deterministic initial condition as well as the intrinsic chaos in solutions of such systems, it is natural

instead to consider an ensemble of initial data representing uncertainty in measurements and character-

ized by a probability density. Monitoring the propagation of such a forecast ensemble in time gives one

the potential to quantify the uncertainty and measure the confidence interval and average predictive

power of a single deterministic solution, whose initial condition is randomly drawn from the initial

spread. Apparently, small ensemble spread at a certain time is a strong evidence of dynamics with good
predictive utility, and large spread denotes otherwise. However, there are at least two major problems

with ensemble simulations which are often encountered in large complex systems. The first problem arises

from the ensemble prediction strategy itself: even though a qualitative estimate of ‘‘small’’ and ‘‘large’’

ensemble spreads might be enough to give some basic insight into the nature of predictability, how

one can quantify the predictive utility of a forecast ensemble in a rigorous manner? The conventional

way is to measure the mean and variance of an ensemble, which is equivalent to approximating the inter-

nal structure of an ensemble by a Gaussian probability density. Central issues of practical importance in

an ensemble prediction such as bimodality or skewness in a forecast ensemble require a general non-
Gaussian description of predictive utility. The second problem becomes important for complex systems:

certainly, a larger ensemble size means better quality of a prediction. However, usually ensembles of very

limited size are affordable in complex systems for making real-time forecasts, largely due to enormous

consumption of computational power. Thus, the natural question arises – whether or not one can trust

the information provided by a forecast ensemble with relatively small size? In other words, how one can

quantify the credibility of a forecast ensemble depending on its sample size? The current work systemat-

ically addresses these two problems within the framework of information theory and rigorous predictabil-

ity estimates via relative entropy.
The applicability of information theory for weather or climate prediction has been studied previously

by Carnevale and Holloway [1], Schneider and Griffies [2], Roulston and Smith [3], Leung and North

[4]. Recently, Kleeman [5] has suggested the relative entropy as an estimate of predictive utility in an

ensemble forecast relative to the climatological record, as well as a signal-dispersion decomposition. The

Gaussian framework of relative entropy and signal-dispersion decomposition has been tested by Kle-

eman et al. [6] for a simple 100-mode truncated Burgers–Hopf model with chaotic behavior and

well-understood spectrum and autocorrelation time scaling (for complete model description and clima-

tology see Majda and Timofeyev [7,8], and Abramov et al. [9]). Majda et al. [10] developed a more
sophisticated framework of predictability through relative entropy for non-Gaussian probability density

functions, which includes a hierarchy of rigorous lower bounds on relative entropy through the statis-

tical moments beyond the mean and covariance through maximum entropy optimization (Mead and

Papanicolaou [11]). Abramov and Majda [12] converted the non-Gaussian predictability framework into

a practical tool through the hierarchy of lower bounds and a rapid numerical optimization algorithm.

Recently, Cai et al. [13] exhaustively tested several facets of the non-Gaussian information theoretic

predictability framework in a simple chaotic mapping model with an explicit attractor ranging from

Gaussian to fractal as parameters are varied. Kleeman and Majda [14] have quantified the loss of infor-
mation in coarse-grained ensemble estimators and applied these ideas to geophysical turbulence. Differ-

ent applications of relative entropy as a predictability tool were developed in Abramov and Majda [12];

besides a straightforward measure of lack of information in the climate relative to the prediction
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ensemble, the relative entropy can be used in estimating lack of information in a forecast ensemble

relative to the actual events (Roulston and Smith [3]), in evaluating additional information content

in the skewness and higher order forecast moments (non-Gaussianity), and the information flow be-

tween different subsets of phase space in an ensemble forecast (statistical correlation between different

large scale phenomena). In Abramov and Majda [12] all of these facets were demonstrated for the Lor-
enz �96 model (Lorenz and Emanuel [15]), including highly non-Gaussian behavior. Finally, Abramov

et al. [16] successfully applied the relative entropy framework to the simplest midlatitude atmospheric

climate model, barotropic T21 spherical truncation with realistic orography in two different dynamical

regimes, with each regime mimicking the behavior of atmosphere at a certain height. In particular, the

information flow was found responsible for correlated switches in large scale structures like the Arctic

Oscillation, North Atlantic Oscillation, and Pacific/North American pattern. All of the above work

demonstrates many practical facets of quantifying uncertainty in ensemble forecasts through the relative

entropy; however, all of the work in idealized settings described above utilized large ensemble sizes.
This points toward the central issue of quantifying the uncertainty of an ensemble forecast with limited

ensemble size in the non-Gaussian framework of information theory and relative entropy. This is the

main topic of this paper.

Perhaps, the most sophisticated contemporary uses of ensemble predictions in complex systems with

small ensemble size occur in weather and climate predictions. Studies of predictions with forecast ensem-

bles were performed, among others, by Anderson and Stern [17], Toth and Kalnay [18] and Palmer [19].

Practice shows that with current computational facilities, in order to perform real-time forecasts with

large atmospheric GCMs, the size of the prediction ensemble has to be small, about 10–50 members,
depending on spatial resolution, with the possibility of 50–100 member ensembles in the near future.

Due to limited forecast ensemble size, certain complications arise concerning the credibility of informa-

tion provided by such ensemble. The common strategy of dealing with small forecast ensembles is to

maximize the information provided by the limited sample size, via generating a forecast ensemble in

a very specific way. In particular, Ehrendorfer and Tribbia [20] show that for correct error growth

reconstruction, the fastest growing directions of the phase space have to be sampled. Two efficient meth-

ods of ensemble generation are usually used in practical ensemble forecasts: local Lyapunov vectors

(Toth and Kalnay [18], Kalnay [21]) and singular vectors (Palmer et al. [22], Reynolds and Palmer
[23]). The efficiency of prediction depending on ensemble size has been studied previously by Buizza

and Palmer [24].

A novel strategy, which may successfully complement the existing one described above, is developed here

within an information theory predictability framework. Rather than providing the way of generating a fore-

cast ensemble in a most efficient manner, this strategy evaluates the credibility of information in an existing

ensemble (however generated), and evaluates its information content in a rigorous manner through an

appropriate modification of the relative entropy in a forecast. Two general techniques are devised here

to account for the lack of information due to small sample size: one is based on the statistical method
of null-hypothesis testing, while the other employs a central limit theorem for the relative entropy of

non-Gaussian moment-based probability densities. These two methodologies are systematically compared

against the straightforward ‘‘perfect predictability’’ method, i.e., when measured information is assumed to

be precise regardless of the sample size. The techniques are tested in both the ‘‘lab’’ and ‘‘field’’ set-ups: in

the ‘‘lab’’ set-up the methodologies are utilized for relative entropy of an explicitly defined, but statistically

undersampled, family of probability density functions with parameterized skewness and bimodality; in the

‘‘field’’ set-up the framework is tested for the Lorenz �96 system, which is a simple forty-dimensional model

with chaotic behavior and unstable wave structure like that in a realistic complex weather system (Lorenz
[25], Lorenz and Emanuel [15], Abramov and Majda [12]).

Section 2 begins the technical discussion of relative entropy and ends with an outline of the remainder of

the paper.
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2. Measuring predictability through relative entropy

As is well known in information theory [26], the relative entropy
RðpjqÞ ¼
Z

pðxÞ log pðxÞ
qðxÞ dx ð1Þ
is a measure of the average lack of information in one probability density function (PDF), q, relative to

some other PDF, p. Formally, it can also be thought of as the information in p relative to q. The relative

entropy is a nonsymmetric, convex functional in p with the property that R(pjq) P 0 with equality if and

only if p = q. It can therefore be thought of as a nonsymmetric distance between p and q. Here, the relative

entropy is used as an indicator of predictability, or predictive utility, in that it measures the utility of a

particular prediction strategy q as compared to an unknown prediction strategy p, where p depends upon

perfect knowledge of the underlying system. The relative entropy is an attractive measure of predictability
for many reasons including that it is invariant under arbitrary changes of variables [27] and that, for a gen-

eral class of densities, it can be decomposed into its signal and dispersion components [10].

The physical interpretation of p and q depends upon the particular setting. For instance, for long term

climate prediction, p may represent the time dependent prediction PDF that can theoretically be found by

solving the Liouville equation associated with the original dynamics. In this scenario, q represents the equi-

librium PDF or climate, and R(pjq) quantifies the amount of information that p provides beyond q. In

weather and short term climate prediction, prediction strategies usually only utilize the first and second mo-

ments [21,18]. Here again, p may represent the perfect prediction PDF theoretically derived from the
dynamics, and q a Gaussian PDF representing the prediction strategy using the first two moments. In this

case, R(pjq) measures the effectiveness of the two-moment strategy as compared to the perfect prediction

scenario.

One of the main obstacles in straightforward use of the relative entropy as a measure of predictability is

that large number of degrees of freedom for p and q make standard integration techniques impractical.

When both p and q are known to be Gaussian, as is well known, the calculation of the relative entropy sim-

plifies to an algebraic expression in terms of the moments of the two densities [5,6]. In [10], a hierarchical

procedure for obtaining a lower bound estimate of the relative entropy based solely on the moments of p
and q is described. Under the assumption that q is of a certain form, which includes Gaussian densities as a

special case, this moment-based relative entropy estimate can be computed in a straightforward manner

even in large-dimensional spaces by a sum of one-dimensional and two-dimensional entropies [12,16].

For ease of reading, the term entropy moment (EM) estimate is used in place of the more cumbersome mo-

ment-based relative entropy estimate. Applications of the methodology to ensemble predictions were

already noted in the introduction [12,13,16].

2.1. Small sample variability

In the moment-based studies of predictability mentioned earlier, large ensemble sizes were used and it

was always assumed that the moments of p and q are known precisely. In practice, it often happens that

only a finite sample from p is given. Additionally, the high computational cost of generating the data

can lead to small sample sizes as compared to the large degrees of freedom of the system. Thus, only imper-

fect estimates of the moments of p are known. The term perfect predictability is used throughout the paper

when referring to the EM estimate with perfect knowledge of the moments of p. Due to the complicated

form of the EM estimate, it is not clear how to determine an unbiased estimate of this quantity based
on the sample moments. Instead, the methodology of the EM estimate is usually carried out with the

sample moments replacing the actual moments. This will be referred to as the sample EM estimate. The

variability of the sample moments will lead to variability in the sample EM estimate. If the sample size
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is large, then the sample EM estimate will be roughly equal to the EM estimate. However, for small sample

sizes, the sample EM estimate may be much more or much less than the EM estimate, leaving no clear con-

clusion about the level of predictability for the prediction strategy. The main focus of this paper is the gen-

eral behavior of the sample EM estimates and the introduction of a minimum predictability, with a

statistical level of confidence, which is implied by the data. The latter requires a shift from trying to estimate
the average lack of information in q relative to p using a finite sample from p to directly quantifying the lack

of information in q relative to the sample itself.

2.2. Sample utility

Formally, if R(pjq) represents the information content of p beyond q, then having only a finite sample

from p should necessarily decrease the information content. This can also be thought of as a loss of infor-

mation due to sample estimation. As an example, consider the case when p is very close to q, so that R(pjq)
is small. Since p is different from q, the positive value of the relative entropy indicates that there is infor-

mation content in p. However, if a small random sample is chosen using p, then it will be difficult to sta-

tistically show that p is different from q to any reasonable level of confidence. That is, that the random

sample could not have possibly come from q. Thus, the information content of the random sample should

be zero. As the sample size increases, it is reasonable to expect that the information content of the random

sample will statistically increase and approach R(pjq).
In this paper, any formal estimate of the random sample�s information content is referred to as a sample

utility. The sample utility can also be thought of as a measure of the unlikeliness that the random sample
from p came from q. The properties that a sample utility should possess, which were discussed in the pre-

vious paragraph, are listed in the following definition.

Definition 1. The sample utility should possess the following three properties:

� The sample utility should be less than the relative entropy. A random sample provides less information

than having p itself. This can also be thought of as a loss of information due to sample estimation. With

the same reasoning, a sample utility which is based only on the sample moments should be less than the

EM estimate.

� The sample utility should statistically increase with sample size. Larger sample sizes provide more

information.

� The sample utility should approach the relative entropy as the sample size approaches infinity.

Since extremely uncharacteristic random samples can be theoretically produced by q, it is impossible to

define a positive estimate for a sample utility which will remain below the relative entropy 100% of the time.

Confidence levels are introduced to allow for the statistically rare occurrences of these uncharacteristic ran-
dom samples. In relation to the actual predictability, then, the sample utility should be the minimum

amount of predictive utility, with a statistical level of confidence, which is implied by the data. The level

of confidence is arbitrary and chosen to be 95% here for demonstration purposes.

Any statistical method which is used to test whether a random sample comes from a particular distribu-

tion, q, can be used to test for zero versus nonzero relative entropy. Thus, distinguishing zero versus

nonzero sample utilities is not a difficult task. However, quantifying the sample utility when it is not zero

requires more work.

In order to define a measure of sample utility that tends to be less than and statistically increasing to the
true relative entropy, it is necessary to consider all the densities that could have reasonably produced the

data and choose the minimum relative entropy over this group. Thus, the method of defining the group of

admissible densities should theoretically determine the measurement of the sample utility. In this paper, two



K. Haven et al. / Journal of Computational Physics 206 (2005) 334–362 339
strategies are suggested based on standard statistical methods. The first strategy, which is outlined in Sec-

tion 4, incorporates a confidence ellipsoid for the moments of q. Whether or not the sample moments of p

fall within the confidence set determines whether there is any sample utility. That the confidence ellipsoid

shrinks to a point as the sample size approaches infinity implies the last two properties in Definition 1. This

measure of sample utility is very conservative and has little trouble satisfying the first property. The second
strategy, outlined in Section 5, deals directly with a one-sided confidence interval for the EM estimate. The-

oretically, the lower bound of this confidence interval will be below the EM estimate 95% of the time and

will statistically increase as the sample size approaches infinity. The confidence interval depends on a central

limit theorem which is stated and proved in Appendix B.

An important issue in measuring the sample utility is the number of moments that should be incorpo-

rated into the estimate. It is sometimes argued that often only the first two moments are adequately approx-

imated by the sample moments and thus the higher moments should be neglected. In reality, the importance

of the higher moments is not only dependent upon the sample size, but also on the difference between the
moments being compared. Ideally, a measure of sample utility should automatically compensate for the

greater variability of the higher moments, so that no decision about whether to include higher moments

is needed.

In the following section, the perfect predictability methodology for the EM estimates is briefly outlined.

A discussion of the behavior of the sample EM estimates follows.
3. Perfect predictability methodology

In a perfect predictability scenario, it is often assumed that the prediction PDF, p, is known precisely.

Here, the term perfect predictability is used to refer to the perfect knowledge of the first K moments, which

are denoted by M(p) = (M1(p), . . . ,MK(p)). For this paper, the value of K is taken to be 2 or 4.

When M(p) is known precisely and q is of a certain exponential form (see Eq. (A.2)), then a lower bound

estimate of R(pjq) is found by minimizing R(qjq) over all probability densities satisfying M(q) = M(p). The

convexity of R ensures that the minimum will be reached for some PDF, which shall be refer to as the

entropy moment (EM) PDF [10]. The lower bound estimate, which shall be refer to as the EM estimate,
can be computed numerically by standard optimization procedures for small values of K and small degrees

of freedom [12]. If K = 2, then both q and the EM PDF are Gaussian densities.

The EM estimate of R(pjq) may also be thought of as the exact value of the minimum information con-

tent given only M(p). More precisely, let a denote an admissible set of moments. Then there is an infinite

family of densities that can produce these moments. The minimum information content over the family is

given by
P ðajMðqÞÞ ¼ minfRðqjqÞ : MðqÞ ¼ ag: ð2Þ

There is no maximum information content over the family. In this new notation, the EM estimate is written

P(M(p)jM(q)). The notation emphasizes the fact that the EM estimates of relative entropy depend solely on

the moments of p and q. Since P is convex in a with the property that P(M(p)jM(q)) P 0 with equality if

and only if M(p) = M(q), it can be thought of as a nonsymmetric distance between M(p) and M(q).

When only a finite sample estimate of M(p) is given, the EM methodology may still be carried out with

the sample moments in place of the true moments. This will be referred to as the sample EM estimate. This

is the strategy implemented in earlier work using these ideas for ensemble prediction for large ensemble
sizes [12,13]. Let s denote the sample estimates ofM(p). Then P(sjM(q)) represents the sample EM estimate.

As previously discussed, for small sample sizes, P(sjM(q)) can be much more or much less than

P(M(p)jM(q)). Often, the sample EM estimate is higher than and decreases to the EM estimate as the sam-

ple size increases through moderate values. This tendency is exactly the opposite of the desired properties
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listed in Definition 1. This behavior can be observed in Figs. 2, 3, 5 and 6, where the performance of the

three methodologies, described in this paper, are compared for specific densities p and q. Throughout, q is

taken to be the standard Gaussian density, while p is the EM PDF with moments given in the table of the

first panel. The second panel shows the graphs of p and q. The third panel is a series of boxplots which show

the results from using the EM methodology for various sample sizes. For each sample size, 500 independent
ensembles are generated (thus constituting a super-ensemble), which are used to compute P(sjM(q)). Each

boxplot shows the range of the results for the 500 ensembles with the box representing the middle 50%, and

the horizontal line through the box represents the median value. The horizontal dashed line across all the

boxplots represents the EM estimate P(M(p)jM(q)). In Figs. 2 and 5, only two-moment estimates are

shown. In Figs. 3 and 6, the corresponding four-moment estimates are shown.

The first set of figures show a case where p is relatively close to the standard Gaussian q, with

R(pjq) = 0.06016. It is therefore not surprising to see that, for small sample sizes, the majority of the sam-

ple EM estimates lie above the EM estimate. Specifically, at sample size 25 in Fig. 3, the sample EM
estimates can reach values of over 0.6. Practically speaking, this means that the EM methodology applied

directly to the sample moments with small ensemble size can lead to extreme over estimation of predict-

ability. For the two-moment case, in Fig. 2, this over estimation is even more pronounced, since the two-

moment EM estimate is zero. Not surprisingly, the tendency of the sample estimate to over estimate the

EM estimate becomes more pronounced as the EM estimate approaches zero. In Figs. 5 and 6, p is

further from the standard Gaussian q, with R(pjq) = 0.7971. Here, the sample estimates, even for small

sample sizes, are more evenly distributed about the EM estimate. However, the spread of the data is

much wider than in the first case. The distribution of the data is actually irrelevant here. In practice, only
one data point will be given. The larger variability only means that sample EM estimates from this PDF

are more likely to be further from the true EM estimate. These two examples illustrate how the variabil-

ity of the EM methodology applied to the sample moments can severely distort the truth about the EM

estimate.

It is interesting to consider the difference between the two-moment and four-moment cases, since it is a

topic of debate whether higher moments are reliable enough to include in estimates of predictability.

Even for sample size 25 in Fig. 5, the majority of the sample estimates fall below the true value of

0.7971, whereas in Fig. 6, the data roughly centers about the true value. This indicates that the EM meth-
odology can be sensitive to the higher moments, even for extremely small sample sizes, and suggests that

the higher moments should not be discarded arbitrarily. However, this does not indicate that the four-

moment sample EM methodology performs better than the two-moment methodology for small sample

sizes. Indeed, only one random sample is typically given, and whether this sample is representative of the

underlying density is impossible to know. Also, since there is more variability in the higher moments than

in the lower moments, it is not surprising to note that there is more variability in the four-moment EM

estimates than in the two-moment EM estimates. All this is more evidence of the need for a measure of

the sample utility.
If p is an EM density, then P(M4(p)js2) measures the amount of information contained in p beyond the

Gaussian density with mean and variance calculated from the random sample and is referred to here as

the non-Gaussianity. The subscripts refer to the number of moments that are used. The quantity P(s4js2)
is therefore the sample EM estimate of the non-Gaussianity. Figs. 4 and 7 show the same boxplot infor-

mation as in the previous figures, but instead of computing P(sjM(q)), for each ensemble, P(s4js2) is com-

puted. The distribution of the data for the boxplots in these figures collaborates the observations already

discussed. Namely, for p close to Gaussian, sample estimates tend to over estimate more, but have smal-

ler variability.
The general behavior of the EM methodology is captured by these two examples. For larger relative

entropies, the distribution of the sample EM estimates tends to spread evenly about the EM estimate, while

for smaller relative entropies, most of the sample EM estimates lie above the EM estimate. As the true
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relative entropy decreases, the sample EM methodology becomes increasingly biased. The span of the data

increases with the number of moments being considered as well as the difference between p and q. This

methodology tends to violate the first two sample utility properties listed in Definition 1. Namely, the sam-

ple EM methodology leads to estimates that can be larger than and statistically decreasing to the true EM

estimate.
In the following section, a method based on hypothesis testing is developed in an attempt to define a

measure of the sample utility that possesses the three desired properties in Definition 1.
4. Adjusted moments methodology

In this section, a measure of the sample utility is defined using the statistical method of hypothesis test-

ing. Since the EM estimate is completely dependent upon the mean and centered moments, it is natural to
question whether or not the sample mean and centered moments could have possibly been produced by q

instead of p. Since the object is to determine the degree to which the data indicates a difference between p

and q, it is assumed that the two densities are the same, prior to the observation of the data. In the context

of hypothesis testing, this translates to a null hypothesis of
H 0 : p ¼ q: ð3Þ

This initial assumption sets a bias towards a lack of predictability for the sample. Given the sample
data from p, sample statistics may then be used to try to prove that the hypothesis is incorrect to some

level of confidence. For demonstration purposes, the level of confidence is set to 95% throughout the

paper.

As stated in Section 2, there are many tests that can be employed to determine whether a set of data may

have been produced by a particular distribution q. If a statistical test is not able to prove, with 95% con-

fidence, that the data did not come from q, then the possibility that the data came from q cannot be ruled

out, and thus the sample utility must be zero. On the other hand, if the test indicates that the data probably

did not come from q, then it is safe to say that the sample utility is positive. The only problem is that the
magnitude of the sample utility is not specified. It may be possible to devise a method of measuring sample

utility based on the p-value of a statistical test, but this idea is not explored here.

4.1. Adjusted moment algorithm

In an attempt to quantify positive sample utilities, a statistical test based on a 95% confidence set for the

sample moments is employed. Let EðMðqÞÞ denote a K dimensional set where, 95% of the time, if a sample

is chosen from q, the sample moments will fall within the set. The shape of EðMðqÞÞ is chosen to be an ellip-
soid (see Eq. (A.11)) to coincide with the asymptotic confidence ellipsoid given by a central limit theorem

proved in Proposition A.3. A simple test of the null hypothesis is whether the sample moments, s, falls with-

in EðMðqÞÞ. If s does not fall within EðMðqÞÞ, then the null hypothesis is rejected and thus R(pjq) > 0. If s

does fall within EðMðqÞÞ, then there is not enough evidence to reject the hypothesis that p = q, and so the

possibility that R(pjq) could be zero cannot be ruled out. The algorithm is schematically shown in Fig. 1.

When the moment test fails to reject the null hypothesis (denoted by S1 in Fig. 1), the sample utility is

defined to be zero. However, when the null hypothesis is rejected, only a formal attempt can be made to

measure the sample utility. Note that s lies within the confidence ellipsoid if and only if M(q) falls within
EðsÞ, where EðsÞ denotes the confidence set EðMðqÞÞ centered at the point s. Thinking of P as a nonsym-

metric distance between s and M(q), it is natural to define the sample utility as the minimum P-distance

between EðsÞ and M(q), as demonstrated for the moment set S2 in Fig. 1). This measure of sample utility

assigns a value of zero when s falls within the confidence ellipsoid and, in effect, moves those values of s
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Fig. 1. AM schematic: Sample moment set S1 falls within confidence ellipsoid EðMðqÞÞ and therefore is adjusted to M(q) (null-

hypothesis is not rejected). Sample moment set S2 does not fall within EðMðqÞÞ (null-hypothesis is rejected), however S2 is adjusted to

a point on EðS2Þ with minimal distance from M(q).
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which are outside of the confidence ellipsoid closer to M(q). For this reason, this measure of the sample

utility is called the adjusted moment (AM) sample utility.
The AM sample utility seems to possess the desired properties listed in Definition 1. First, if the true

moments M(p) lie within EðsÞ, then the AM sample utility will be less than the EM estimate. If p is close

to q, then this should occur roughly 95% of the time. In fact, since the minimum over EðsÞ is used, this prop-
erty is almost never violated. Second, since the confidence ellipsoid shrinks to a point as the sample size

goes to infinity, it is reasonable to expect that the AM sample utility will statistically increase to the EM

estimate.

In the fourth panel of Figs. 2–7, a similar series of boxplots to the third panel are shown for this adjusted

moments methodology. For each figure, at least 95% of the AM sample utilities fall below and statistically
increases to the EM estimate. Thus, for each random sample, the EM estimate lies above the AM sample

utility, with at least 95% confidence.

In order to obtain an executable algorithm for the adjusted moment methodology, some simplifying

assumption are made. In the case where only one moment is constrained, no additional assumptions need

to be made. In this case, a 95% confidence interval for the moment can be computed using a bootstrap

method for small sample sizes or an approximate 95% confidence interval given by the central limit theorem

for large sample sizes. If the moment from q lies outside of the shifted confidence interval, then the convex-

ity of P implies that the minimum P-distance between the moment and the shifted confidence interval oc-
curs at the endpoint of the confidence interval that is closest to the moment of q. For the multiple constraint

case, finding the point where the minimum P-distance occurs is not as easy. The convexity of P implies only

that the point lies on the boundary of EðsÞ which is closest toM(q). In order to get an executable algorithm,

it is assumed that the appropriate point lies on the line connecting s toM(q). At the very least, this choice of

adjusted moments ensures that the resulting sample utility will be less than P(sjM(q)).

As an alternative approach, it is tempting to try to use the EM density given by the EM methodology to

construct an approximate 95% confidence ellipsoid for M(p) directly. The problem with this approach is

that the large variability of the higher moments can lead to estimates that are much less likely to be below
the EM estimate. This sort of approach would only be appropriate for sufficiently large sample sizes.



Fig. 2. Two moments: The first series of boxplots show the distribution of 500 sample EM estimates over a range of increasing sample

sizes. The second and third series of boxplots show the corresponding AM and CL sample utilities described in Sections 4 and 5. For

each sample size, 500 independent ensembles were generated. Each boxplot shows the range of the results for the 500 ensembles with

the box representing the middle 50%, and the horizontal line through the box representing the median value. The horizontal dashed

line across all the boxplots represents the EM estimate.
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The adjusted moment methodology tends to satisfy the desired properties in Definition 1. However, it is

not very adept at detecting information in the higher moments. This methodology seems to perform best for

the two-moment case. The adjusted four-moment estimates in Figs. 3 and 6 do not show significant

improvements over the two-moment counterparts in Figs. 2 and 5 for the smaller sample sizes. In addition,

the adjusted non-Gaussianity estimates in Figs. 4 and 7 are zero or close to zero, even for larger sample



Fig. 3. Four moments: The first series of boxplots show the distribution of 500 sample EM estimates over a range of increasing sample

sizes. The second and third series of boxplots show the corresponding AM and CL sample utilities described in Sections 4 and 5. For

each sample size, 500 independent ensembles were generated. Each boxplot shows the range of the results for the 500 ensembles with

the box representing the middle 50%, and the horizontal line through the box representing the median value. The horizontal dashed

line across all the boxplots represents the EM estimate.
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sizes. On the other hand, the series of boxplots in Figs. 2 and 5 demonstrate the effectiveness of this meth-

odology for the two-moment case. For the first figure, where the EM estimate is zero, the adjusted moment

methodology yields very few nonzero estimates. This is an important special case, since the EM methodol-

ogy is the most biased for this case. In the second figure, the EM estimate lies fairly close to the 95% mark

for the various data sets, as desired.



Fig. 4. Non-Gaussianity: The first series of boxplots show the distribution of 500 sample EM estimates over a range of increasing

sample sizes. The second and third series of boxplots show the corresponding AM and CL sample utilities described in Sections 4 and

5. For each sample size, 500 independent ensembles were generated. Each boxplot shows the range of the results for the 500 ensembles

with the box representing the middle 50%, and the horizontal line through the box representing the median value. The horizontal

dashed line across all the boxplots represents the EM estimate.
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Amore rigorous explanation of the adjusted moment procedure as well as the statement and proof of the

necessary central limit theorem required by this theory are given in Appendix A. In the following section, a

different measure of sample utility is proposed that uses a central limit result for P that is proved in

Appendix B.



Fig. 5. Two moments: The first series of boxplots show the distribution of 500 sample EM estimates over a range of increasing sample

sizes. The second and third series of boxplots show the corresponding AM and CL sample utilities described in Sections 4 and 5. For

each sample size, 500 independent ensembles were generated. Each boxplot shows the range of the results for the 500 ensembles with

the box representing the middle 50%, and the horizontal line through the box representing the median value. The horizontal dashed

line across all the boxplots represents the EM estimate.
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5. Central limit theorem methodology

In this section, a measure of sample utility is defined directly in terms of a 95% confidence interval for the

sample EM estimate itself. The procedure depends upon a central limit result for P, which is stated and

proved in Appendix B.



Fig. 6. Four moments: The first series of boxplots show the distribution of 500 sample EM estimates over a range of increasing sample

sizes. The second and third series of boxplots show the corresponding AM and CL sample utilities described in Sections 4 and 5. For

each sample size, 500 independent ensembles were generated. Each boxplot shows the range of the results for the 500 ensembles with

the box representing the middle 50%, and the horizontal line through the box representing the median value. The horizontal dashed

line across all the boxplots represents the EM estimate.
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The central limit result states that, as sample size approaches infinity, P(sjM(q)) will approach a Gauss-

ian distribution centered about P(M(p)jM(q)). In Theorem B.4 in Appendix B, we give an explicit formula

for the variance of this Gaussian distribution which involves a complicated explicit formula depending on

the moment hierarchy. This theoretical fact leads to the following.



Fig. 7. Non-Gaussianity: The first series of boxplots show the distribution of 500 sample EM estimates over a range of increasing

sample sizes. The second and third series of boxplots show the corresponding AM and CL sample utilities described in Sections 4 and

5. For each sample size, 500 independent ensembles were generated. Each boxplot shows the range of the results for the 500 ensembles

with the box representing the middle 50%, and the horizontal line through the box representing the median value. The horizontal

dashed line across all the boxplots represents the EM estimate.

348 K. Haven et al. / Journal of Computational Physics 206 (2005) 334–362
5.1. EM central limit algorithm

As is commonly done in the statistical literature [28], all the parameters in the formula for the variance

that are unknown are approximated by the corresponding finite sample quantities. Once the approximate

variance is known, an approximate, one-sided, 95% confidence interval for the EM estimate can be
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constructed. The lower bound cutoff for the confidence interval is P ðsjMðqÞÞ � 1:965 � r̂=N , where r̂2 is the

approximate variance and N is the sample size. The value 1.965 is the value for which a 95% of the weight of

standard Gaussian density lies below. This lower bound cutoff is defined to be the central limit (CL) sample

utility. If the confidence cutoff is less than zero, the CL sample utility is defined to be zero. Intuitively, this

algorithm has the desirable features in Definition 1 at least for sufficiently large sample sizes. For sufficiently
large sample sizes, the EM estimate lies above the CL sample utility, with a 95% level of confidence. As the

sample size increases, the CL sample utility will increase to the EM estimate. For small sample sizes, the

95% confidence level still can remain fairly accurate since in statistics approximate confidence intervals

are often quite accurate for small sample sizes [28].

In the final panel of Figs. 2–7, a similar series of boxplots to the third and fourth panels are shown for

this central limit theorem methodology. Since the sample size is finite and the variance is approximated, it is

surprising that, even for relatively small sample sizes, the lower bound cutoff from the central limit theorem

seems to satisfy the three properties listed in Definition 1. In addition, this methodology is much better than
the adjusted moment methodology at detecting information content due to the higher moments. Compar-

ing Fig. 2 to Fig. 3, even at sample size 25, the four-moment estimates are able to successfully detect the

larger information content due to the higher moments. This is especially surprising, given the closeness

of p to the standard Gaussian q. The ability of this methodology to detect higher moment information

is even more pronounced in Figs. 5 and 6. The detection of non-Gaussianity, in Fig. 4, is also better than

in the adjusted moment methodology. In the first figure, as expected, there is little detection of higher mo-

ment information until larger sample sizes. In the second figure, non-Gaussianity information begins to be

detected at sample size 50. Thus, non-Gaussianity information can be detected with confidence at small
sample sizes.

In the following section, the methodologies introduced in Sections 4 and 5 are applied to the Lorenz �96
model in an attempt to detect non-Gaussian tendencies in ensemble prediction densities, with 95%

confidence.
6. Application to the Lorenz �96 model

In this section, the adjusted moment and central limit algorithms for detection of non-Gaussianity, intro-

duced in Sections 4 and 5, are carried out for the damped forced Lorenz �96 model.

The Lorenz �96 model is the spatially discrete family of equations given by
duj
dt

¼ ðujþ1 � uj�2Þuj�1 � uj þ F ; j ¼ 0; 1; . . . ; J � 1 ð4Þ
with periodic boundary conditions, u0 = uj. The term �uj in (4) represents damping (with a unit time scale

of 5 days) while F represents constant ‘‘solar forcing’’ (see [25,15]). The model in (4) is designed to mimic

midlatitude weather and climate behavior, so periodic boundary conditions are appropriate. The unit

spatial scale between discrete nodes is regarded as a nondimensional midlatitude Rossby radius �800

km and for this reason the discrete system size is set to be J = 40 nodes. In midlatitude weather systems,

the main ‘‘weather waves’’, the Rossby waves have westward (toward negative x) phase velocity, but from

out own anecdotal experience, weather systems collectively move eastward (toward positive x) with unsta-
ble behavior. The models in (4) have analogous behavior. The modes of the system are discrete Fourier

modes with wavenumbers k ranging �20 < k 6 20. Analogous to real weather systems, the models produce

bands of unstable waves centered about the wavenumber jkj = 8 with westward phase velocities and overall

eastward group velocities, and have strongly chaotic dynamics. These results, as well as a more detailed

description of the model, can be found in [12]. In the current paper, the robust dynamical regime is used

with constant forcing F = 8 and damping coefficient d = 1. Below we examine the non-Gaussian informa-
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tion content in ensemble predictions with fairly small sample sizes for the three Fourier modes, k = 0, k = 3

and k = 8; the mode k = 0 defines the climatology, while k = 8 is the most unstable mode in the model and

k = 3 is a linearly stable but chaotic large scale mode (see [12]).

The numerical set-up for the experiments with the Lorenz �96 model is the following: first, a long (10,000

time units) ‘‘climatological’’ time series of a single solution is generated. Then an instantaneous snapshot of
this solution is recorded at the end of the series. The statistical ensembles of various sizes are then bred

around this single recorded snapshot, by perturbing each gridpoint via a narrow Gaussian probability with

small variance (10�5 fraction of the climatological variance). The ensembles then propagate further, as their

time series are being recorded.

Four different ensemble sizes with 25, 50, 100 and 200 members are employed in the current work to

evaluate and compare the efficiency of the methodologies for measuring information content for different

sample sizes. Since an ensemble provides a single value of the relative entropy at any given time, a super-

ensemble (ensemble of ensembles) has to be generated for each of the four sample sizes in order to study
Fig. 8. Fourier mode: k = 0. Top panel shows the average non-Gaussianity, over 20 ensembles, with sample sizes 25 (solid), 50

(dashed), 100 (dot-dashed), and 200 (dotted). Panels 2–4, the solid curve shows the average non-Gaussianity for the indicated sample

size. The dashed curve shows the ensemble with the largest non-Gaussianity at time t = 4. The dot-dashed curve shows the adjusted

moment technique applied to this ensemble. The dotted curve shows the central limit technique applied to this ensemble.
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meaningful statistical properties of non-Gaussianity in different regimes. For each sample size, a super-

ensemble consisting of 20 ensembles is employed.

The average of the sample non-Gaussianities of the Fourier mode k = 0 are plotted in the first panel of

Fig. 8, with sample sizes 25 (solid), 50 (dashed), 100 (dot-dashed), and 200 (dotted). In general, the average

of the sample non-Gaussianities is not equal to the true non-Gaussianity, but here it is assumed. The graphs
show the averages decreasing with increasing sample size except for a spike in the non-Gaussianity at time

t = 4. This behavior is counter to the desired behavior described in Definition 1.

The second panel of Fig. 8 shows the average sample non-Gaussianity for sample size 25 as a solid curve.

The dashed curve represents the ensemble with the largest non-Gaussianity at time t = 4. The dot-dashed

and dotted curves, which overlap on this graph, show the adjusted moment and central limit methodolo-

gies, respectively, applied to this ensemble. Neither method produces any non-Gaussianity information, due

to the small sample size. Similar graphs are shown for each sample size in panels three, four, and five. In

each panel, the solid curve represents the average sample non-Gaussianities, while the dashed, dot-dashed,
and dotted curves represent the sample EM, adjusted moment, and central limit methodologies applied to

the ensemble with the largest non-Gaussianity at time t = 4. As expected from the earlier results in Section
Fig. 9. Fourier mode: k = 0. Each graph shows a histogram of the data from panels 2–4 in Fig. 8 at time t = 4. The Gaussian and four-

moment fits are overlayed.
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4, the adjusted moment methodology is not effective at detecting the non-Gaussianity. On the other hand,

the central limit theorem method produces a curve below and increasing toward the average sample non-

Gaussianity curve. The plots demonstrate that evidence of non-Gaussian behavior of the prediction density

can be detected, with 95% confidence, at sample sizes as small as 50. Fig. 9 shows the histograms of the

data, at each sample size and time t = 4, for the ensemble with the maximum non-Gaussianity at time
t = 4. The solid curve shows the Gaussian sample EM density, and the dashed curve shows the four-

moment sample EM density. Clearly, a four-moment density fits the data better than the Gaussian density.

However, the issue here is whether the Gaussian density could have produced the data.

Figs. 10–13 show the same plots as Figs. 8 and 9 for Fourier modes k = 3 and k = 8. In each case, the

observed ensemble is the one with maximum non-Gaussianity in Fourier mode k = 0. For these figures, the

histograms are plotted for the time t = 3, where the largest peak of non-Gaussianity seems to appear. Here

again, the central limit methodology detects non-Gaussian behavior of the prediction density, with 95%

confidence.
Fig. 10. Fourier mode: k = 3. Top panel shows the average non-Gaussianity, over 20 ensembles, with sample sizes 25 (solid), 50

(dashed), 100 (dot-dashed), and 200 (dotted). Panels 2–4, the solid curve shows the average non-Gaussianity for the indicated sample

size. The dashed curve shows the ensemble with the largest non-Gaussianity in the k = 0 mode at time t = 3. The dot-dashed curve

shows the adjusted moment technique applied to this ensemble. The dotted curve shows the central limit technique applied to this

ensemble.



Fig. 11. Fourier mode: k = 3. Each graph shows a histogram of the data from panels 2–4 in Fig. 10 at time t = 3. The Gaussian and

four-moment fits are overlayed.

K. Haven et al. / Journal of Computational Physics 206 (2005) 334–362 353
An interesting example of a false indication of bimodality for the most unstable mode, k = 8 can be seen

in Fig. 13. In the first panel, at sample size 25, there seems to be a strong indication of non-Gaussianity.

Visually, the data seems bimodal, and the corresponding sample EM estimate, the dashed line in panel

two of Fig. 12 at t = 3, is �0.5. However, at a sample size of 200, in the fourth panel, the bimodality is

almost completely gone, both visually and by sample EM estimate. Interestingly, the central limit method-

ology detects little or no non-Gaussian behavior for all sample sizes, and this is a highly desirable feature.

The results suggest, with 95% confidence, that non-Gaussian tendencies exist for some modes of the pre-

diction densities at various times. That the higher moment information is detected, with confidence and for
small sample sizes, is evidence that a strictly Gaussian prediction strategy will sometimes miss substantial

levels of predictability.



Fig. 12. Fourier mode: k = 8. Top panel shows the average non-Gaussianity, over 20 ensembles, with sample sizes 25 (solid), 50

(dashed), 100 (dot-dashed), and 200 (dotted). Panels 2–4, the solid curve shows the average non-Gaussianity for the indicated sample

size. The dashed curve shows the ensemble with the largest non-Gaussianity in the k = 0 mode at time t = 3. The dot-dashed curve

shows the adjusted moment technique applied to this ensemble. The dotted curve shows the central limit technique applied to this

ensemble.
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7. Summary

The information theory framework utilizing relative entropy is extended here to estimate uncertainties in

predictions coming from the limited sample size of a forecast ensemble. Two methodologies are devised to

compensate for the lack of information due to small sample size: one is based on a null-hypothesis testing

for general non-Gaussian moments of the probability density functions and leads to the Adjusted Moment

Algorithm of Section 4, while the other employs a central limit theorem for the moment-based relative

entropy itself and leads to the EM central limit algorithm of Section 5. The two methodologies are system-
atically tested against the straightforward ‘‘perfect predictability’’ EM method through two series of exper-

iments involving both the explicitly defined family of non-Gaussian probability density functions with

parameterized skewness and bimodality, and the Lorenz �96 model, a simple truncation of the Burgers–

Hopf equation with damping and constant forcing. The Lorenz �96 model was picked for its simplicity



Fig. 13. Fourier mode: k = 8. Each graph shows a histogram of the data from panels 2–4 in Fig. 12 at time t = 3. The Gaussian and

four-moment fits are overlayed.
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and the ability to mimic the chaotic behavior of unstable wave patterns in complex weather systems. We

summarize the results of the study in the following remarks:

� Perfect predictability methodology. Even though the perfect predictability methodology is not a novel

technique developed here and has been used in previous ensemble prediction studies only with large sam-

ple sizes, the authors summarize the trends here for easy comparison with other methodologies. The

perfect predictability methodology has the practical advantage that it is theoretically centered at the

EM estimate for information. Two qualitatively different types of behavior can be distinguished for this
method with varying sample size: first, when the actual relative entropy of two probability density func-

tions is large, the perfect predictability methodology overshoots and undershoots the truth with roughly

equal possibility for all considered sample sizes; and second, when the actual relative entropy is small,
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this straightforward method tends to overshoot the truth, gradually adjusting to it with increased sample

size. Both types of behavior are expected: the latter is due to the fact that in the limiting case of p = q

(zero utility) an undersampled p can only produce overshoots (relative entropy can not be negative),

while the former occurs because for large relative entropy both undershoots and overshoots are roughly

equally possible.
� Adjusted moments methodology. For the two-moment (Gaussian) estimates the adjusted moments meth-

odology shows significant improvement over the perfect predictability methodology for small values of

relative entropy. There is no improvement for large values of relative entropy, because in that case the

results of perfect predictability methodology are statistically centered at the truth, while the adjusted

moments methodology systematically undershoots the truth (this is what it has been designed for in

the first place). But even for systematic undershoots, the adjusted moment methodology shows rapid

convergence to the truth with increasing sample size. There is no significant improvement, however,

for the four-moment estimates over two-moment estimates, which seems to be an intrinsic deficiency
of the adjusted moments strategy.

� Central limit theorem methodology. While the general behavior of the central limit technique has trends

similar to those of the adjusted moments methodology, there is significant improvement compared to

adjusted moments methodology. First, the information from the non-Gaussian moments is now detected

successfully, which is also practically demonstrated in the Lorenz �96 model with sample sizes in the

range 50–100. Second, the convergence to the true relative entropy with increasing sample size is gener-

ally much faster than that for the adjusted moments methodology. Third, the method is robust at small

sample sizes to false detection of non-Gaussianity. It is therefore concluded that the central limit theorem
methodology is superior to the adjusted moments methodology, at least for purposes of the current

paper, and within its testing framework.

� Generalization for multivariate distributions. All three algorithms discussed above generalize in a straight-

forward fashion conceptually to multivariate distributions in N variables. However, there are major

practical computational issues in this setting. First, there are no practical ways to compute the relative

entropy in (1) directly through quadrature for N � 1 even if the distributions p,q are known exactly. Sec-

ondly, even for the perfect predictability algorithm, the optimization procedure for four-moment con-

straints becomes prohibitively expensive for large N. The approach utilized by Abramov and Majda
[12] in this setting to use mathematical theory [10] to bound from below the information content in

(1) for large N by a sum of N one-dimensional relative entropies plus a sum of N(N + 1)/2 two-dimen-

sional entropies. A rapid optimization algorithm for four moment estimators for one- and two-dimen-

sional relative entropies is developed and used in [12,16] in conjunction with this approach (see [29] for

algorithmic details). This algorithmic strategy can be applied directly to both the adjusted moment and

central limit statistical methodologies. However, the interesting issue of the sample sizes for significant

non-Gaussian detection through the algorithms for the two-dimensional distributions remains to be

explored.

Overall, the current work demonstrates the general versatility of the finite sample estimates. It is shown

that the methodologies are devised under the rigorous framework of the information theory and based

upon the fact that finite sample sizes reduce the information content in terms of relative entropy. The

‘‘lab’’ testing with explicitly given probability densities reveals the consistency of the methodologies and

their estimates with the exact relative entropy measurements. Finally, the ‘‘field’’ testing, based upon the

Lorenz �96 model, unambiguously shows the practical applicability of the small sample estimation strategies

developed here. Clearly, the EM central limit algorithm is a promising one for detecting non-Gaussianity in
practical ensemble predictions with relatively small sample size.

Finally, in [14], the term sample utility is used to refer to a particular sample estimate of the EM estimate

which uses a Bayesian approach. In this approach, the unknown PDF, p, is assumed to belong to a certain
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family of distributions with undetermined parameters. The undetermined parameters are assumed to be

random, with a uniform prior distribution. Conditioning on the sample moments leads to a posterior

distribution, which is used to compute the expected information loss from using a family member with mo-

ments equal to the sample moments. This expected information loss is assumed to be the information loss

due to sample estimation, and thus, subtracted from the sample EM estimate. This approach is a formal
attempt to eliminate the bias in using the sample EM estimate and not an attempt to define a quantity pos-

sessing the properties suggested in Definition 1. Since the goal of this approach is very different from the

goal of the approaches taken in this paper, these strategies should not be compared.
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Appendix A. Details of adjusted moment methodology

Here, the mathematical details that support the discussion in Sections 3 and 4 are given. The exact def-

initions of the involved quantities are given, followed by the statements and proofs or the needed results.

For any probability density, q, the mean and centered moments of q are defined as
M1ðqÞ ¼
Z

xqðxÞ dx and MkðqÞ ¼
Z

ðx�M1ðqÞÞkqðxÞ dx; k P 2: ðA:1Þ
Throughout the discussion, it is assumed that q is of the form
qðxÞ ¼ exp �
XK
i¼0

aiðx� lÞi
" #

; ðA:2Þ
where l = M1(q) is the mean of q and a are uniquely determined by the moments M(q). For this paper, the

value of K is either 2 or 4.
When M(p) is known precisely, a lower bound estimate of R(pjq) is found by minimizing R(qjq) over all

probability densities satisfying M(q) = M(p). The convexity of R ensures that the minimum will be reached

for some pK, the entropy moment (EM) PDF. The EM PDF has the form
pKðxÞ ¼ Zðh; mÞ�1
exp h1xþ

XK
k¼2

hkðx� mÞk
" #

qðxÞ; ðA:3Þ
where h are the Lagrange multipliers for the moment constraints, m = M1(p), and
Zðh; mÞ ¼
Z

exp h1xþ
XK
k¼2

hkðx� mÞk
" #

qðxÞ dx
is the normalizing constant. When K = 2 and q is Gaussian, the EM density is Gaussian.

The EM lower bound estimate of R(pjq) is defined as R(pKjq), which is given by
RðpK jqÞ ¼ � logðZðh; mÞÞ þ h �MðpÞ: ðA:4Þ
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It follows immediately from the definition of pK that R(pjq) P R(pKjq). The definition of the minimum

information content given only M(p) is given by
P ðMðpÞjMðqÞÞ ¼ minfRðqjqÞ : MðqÞ ¼ MðpÞg ¼ � logðZðh; mÞÞ þ h �MðpÞ: ðA:5Þ
Let N denote the sample size and x1, . . . ,xN denote the observed sample data from p. The sample data can

be thought of as just one realization from the set X1, . . . ,XN of iid p-distributed random variables. The sam-

ple moments of the random variables are given by
S1 ¼
1

N

XN
i¼1

X i and Sk ¼
1

N

XN
i¼1

ðX i � S1Þk; k P 2: ðA:6Þ
The sample moments, s = (s1, . . . ,sK), are defined as in Eq. (A.6) with x replacing X and can be thought of as

just one realization of the random vector S = (S1, . . . ,SK).
We are now ready to state and prove the central limit result needed for the definition of the approximate

confidence ellipsoids, described in Section 4, and the approximate variance of P(SjM(q)), described in Sec-

tion 5. This proposition is also needed for the proof of Theorem B.4. Both Proposition A.3 and Theorem

B.4 rely heavily upon a standard result known as Slutsky�s Theorem, which for convenience, is reprinted

here.

Theorem A.2 (Slutsky). If g(x,y) is a jointly continuous function, Xn converges to X in distribution, and Yn

converges to a constant a in probability; then g(Xn,Yn) converges to g(X,a) in distribution.

Proposition A.3. Assume that X1, . . . ,XN are iid random variables from a common distribution with density q.

Then
ffiffiffiffi
N

p
ðS�MðqÞÞ converges to a Gaussian distribution with mean zero and covariance C = ARAT, where
Ri;j ¼
Z

ððx� lÞi �MiðqÞÞððx� lÞj �MjðqÞÞqðxÞ dx; ðA:7Þ
where A is a 2 · 2 identity matrix for K = 2, and
A ¼ I4�4 �
XK
k¼3

kMk�1ðqÞek ðA:8Þ
for K = 4. Here, I4·4 denotes a 4 · 4 identity matrix, and ek denotes the kth standard unit vector. In the def-

inition of R, in Eq. (A.7), M1(q) is defined to be zero.

Proof. The proof is carried out for the case when K = 4. The proof for the K = 2 case is similar and simpler.

First, consider the asymptotics of the sample moments centered around l
M̂1 ¼
1

N

XN
i¼1

X i and M̂k ¼
1

N

XN
i¼1

ðX i � lÞk; k P 2: ðA:9Þ
The central limit theorem states that
ffiffiffiffi
N

p
ðM̂ðqÞ �MðqÞÞ converges to a Gaussian distribution with mean

zero and covariance given by R in Eq. (A.7).

In order to determine the asymptotics of
ffiffiffiffi
N

p
ðS�MðqÞÞ, Slutsky�s theorem is needed. For k P 2
Sk ¼
1

N

XN
i¼1

ðX i�S1Þk ¼
1

N

XN
i¼1

Xk
j¼0

k

j

� �
ðX i�lÞjðl�S1Þk�j ¼

Xk
j¼2

k

j

� �
M̂jðl�S1Þk�jþð1� kÞðl�S1Þk:
Thus
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ffiffiffiffi
N

p
ðSk �MkðqÞÞ¼

ffiffiffiffi
N

p
ðM̂k �MkðqÞÞþ

Xk�1

j¼2

k

j

� �
M̂jð

ffiffiffiffi
N

p
ðl�S1ÞÞk�jN

1�kþj
2 þð1� kÞð

ffiffiffiffi
N

p
ðl�S1ÞÞkN

1�k
2 :

ðA:10Þ
Since
ffiffiffiffi
N

p
ðl� S1Þ converges to a Gaussian random variable and N

1�k
2 converges to zero, Slutsky�s theorem

implies that the last term in Eq. (A.10) converges to zero. Similarly for j < k�1, since M̂ converge to M(q),

and N
1�kþj

2 converges to zero, all but the (k � 1)th term in the sum will converge to zero. Therefore
ffiffiffiffi
N

p
ðS�MðqÞÞ ¼

ffiffiffiffi
N

p
ðM̂�MðqÞÞ þ

X4
k¼3

kM̂k�1

ffiffiffiffi
N

p
ðl� S1Þ þ RN ¼ Â½

ffiffiffiffi
N

p
ðM̂�MðqÞÞ� þ RN ;
where Â is the approximation of A in Eq. (A.8) and RN is a remainder term that converges to zero in dis-

tribution. Since
ffiffiffiffi
N

p
ðM̂�MðqÞÞ converges to a Gaussian distribution with covariance R and Â converges to

A, it follows from Slutsky�s Theorem and the last display that
ffiffiffiffi
N

p
ðS�MðqÞÞ converges to a Gaussian dis-

tribution with covariance C. This ends the proof of the proposition.

Although P(sjM(q)) approaches P(M(p)jM(q)) as N! 1, it is not clear whether it is an unbiased esti-

mate P(M(p)jM(q)) for finite N. In fact, since S are biased estimates for M(p), it is reasonable to suspect

that P(SjM(q)) is biased as well.
Given the central limit result for S, a precise definition for the asymptotic 95% confidence ellipsoid can

be made. Since, under the null hypothesis, X1, . . . ,XN are q-distributed random variables, the confidence

ellipsoid for S will have the form
EðMðqÞÞ ¼ a : jD�1ða�MðqÞÞj 6 f:95ffiffiffiffi
N

p
� �

; ðA:11Þ
where D ¼
ffiffiffiffi
C

p
, C is the covariance matrix defined in Proposition A.3, and f0.95 satisfiesR

Bð0;f0:95Þð2pÞ
�K=2

exp½�jxj2=2� dx ¼ 0:95. This confidence ellipsoid becomes asymptotically exact as

N ! 1. h

A.1. Comment on non-Gaussianity calculation

For the non-Gaussianity calculations, the statistics which are used do not depend upon the random

mean S1, but on the known mean s1. These statistics, ~S ¼ ðS3; S4Þ, satisfy a central limit theorem with

the 2 · 2 covariance matrix given by the appropriate submatrix of R, in Eq. (A.7). In this definition of

R, the PDF q is a Gaussian density with mean s1 and variance s2.
Appendix B. Details of central limit methodology

This section contains the statement and proof of a central limit theorem for P(SjM(q)), which is used for

the central limit methodology in Section 5. The theorem follows from the central limit theorem proved in

Proposition A.3 and Slutsky�s theorem, Theorem A.2.

Theorem B.4. The random variable
ffiffiffiffi
N

p
ðP ðSjMðqÞÞ � P ðMðpÞjMðqÞÞÞ converges in distribution to a Gaussian

distribution with mean zero and variance r2 = a CaT, where C is defined as in Proposition A.3 with p in place of

q and
a ¼ h� ð3M2ðpÞh3 þ 4M3ðpÞh4Þe1: ðB:1Þ
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Proof. The proof is carried out for the case when K = 4. The proof of the K = 2 case is similar and simpler.

Let ZN ¼
ffiffiffiffi
N

p
ðP ðSjMðqÞÞ � P ðMðpÞjMðqÞÞÞ. With a simple regrouping of the terms, it follows from Eq.

(A.5) that
ZN ¼ �
ffiffiffiffi
N

p
ðlogðZðhN ; S1ÞÞ þ logðZðh; mÞÞÞ þ

ffiffiffiffi
N

p
ðhN � S� h �MðpÞÞ

¼ hN �
ffiffiffiffi
N

p
ðS�MðpÞÞ �

ffiffiffiffi
N

p
½logðZðhN ; S1ÞÞ � logðZðh; mÞÞ �MðpÞ � ðhN � hÞ�: ðB:2Þ
It follows from Slutsky�s Theorem and Proposition A.3 that the first term, hN �
ffiffiffiffi
N

p
ðS�MðpÞÞ, converges to

a Gaussian distribution with mean zero and variance hChT. To determine the asymptotics of the second

term, Z(hN,S1) is expanded about m and then about h. With the change of variables
cNj ¼
X4
k¼j

k

j

� �
hNk ðm� S1Þk�j

;

log(Z(hN,S1)) can be rewritten as
logðZðhN ; S1ÞÞ ¼ log

Z
exp½hN1 xþ

X4
k¼2

hNk ðx� S1Þk�qðxÞ dx
 !

¼
X4
k¼2

hNk ððm� S1Þk � mkðm� S1Þk�1Þ þ log

Z
exp½cN1 xþ

X4
j¼2

cNj ðx� mÞj�qðxÞ dx
 !

¼ BN þ logðZðcN ; mÞÞ; ðB:3Þ
where BN denotes the first term in the previous display. Expanding log(Z(cN,m)) about h, it follows that:
logðZðcN ; mÞÞ ¼ logðZðh; mÞÞ þMðpÞ � ðcN � hÞ þ RN

¼ logðZðh; mÞÞ þMðpÞ � ðhN � hÞ þMðpÞ � gN þ RN ; ðB:4Þ
where
gNj ¼
X4
k¼jþ1

k

j

� �
hNk ðm� S1Þk�j

for j ¼ 1; 2; 3 and gN4 ¼ hN4
and RN is a remainder term of order jcN�hj2. It follows from Eqs. (B.3) and (B.4) that the second term in
Eq. (B.2) simplifies to
ffiffiffiffi

N
p

ðBN þMðpÞ � gN þ RN Þ: ðB:5Þ

The central limit theorem implies that

ffiffiffiffi
N

p
ðS1 � mÞ converges to a Gaussian random variable. It follows

from Slutsky�s Theorem that
ffiffiffiffi
N

p
ðS1 � mÞk converges to zero for k > 1. Since
ffiffiffiffi
N

p
MðpÞ � gN ¼ �MðpÞ �

2hN2
3hN3
4hN4
0

0
BBB@

1
CCCA

ffiffiffiffi
N

p
ðS1 � mÞ þOð

ffiffiffiffi
N

p
ðS1 � mÞ2Þ
and
 ffiffiffiffi
N

p
BN ¼ 2mhN

ffiffiffiffi
N

p
ðS1 � mÞ þOð

ffiffiffiffi
N

p
ðS1 � mÞ2Þ;
2
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it follows that
ffiffiffiffi
N

p
ðBN þMðpÞ � gN Þ ¼ �ð3M2ðpÞhN3 þ 4M3ðpÞhN4 Þ

ffiffiffiffi
N

p
ðS1 � mÞ þOð

ffiffiffiffi
N

p
ðS1 � mÞ2Þ: ðB:6Þ
Substituting Eqs. (B.5) and (B.6) into Eq. (B.2), it follows that:
ZN ¼ hN � ð
ffiffiffiffi
N

p
ðS�MðpÞÞÞ � ð3M2ðpÞhN3 þ 4M3ðpÞhN4 Þ

ffiffiffiffi
N

p
ðS1 � mÞ þOð

ffiffiffiffi
N

p
ðS1 � mÞ2Þ þ

ffiffiffiffi
N

p
RN

¼ aN �
ffiffiffiffi
N

p
ðS�MðpÞÞ þOð

ffiffiffiffi
N

p
ðS1 � mÞ2Þ þ

ffiffiffiffi
N

p
RN ;
where aN is the defined as in Eq. (B.1), but with hN in place of h. It follows from Slutsky�s Theorem and

Proposition A.3 that aN �
ffiffiffiffi
N

p
ðS�MðpÞÞ þOð

ffiffiffiffi
N

p
ðS1 � mÞ2Þ converges to a Gaussian distribution with

mean zero and variance r2 = aCaT.

It remains to be shown that
ffiffiffiffi
N

p
RN converges to zero in distribution. This fact follows from the well-

known fact that if aN is a maximum likelihood estimator (MLE) of a, then
ffiffiffiffi
N

p
ðaN � aÞ converges to a

Gaussian distribution with mean zero and covariance given by the Fisher information matrix. To see that

cN is the MLE of h, first consider the set of multipliers aN such that
pKðxÞ ¼ ZðaNÞ�1
exp

XK
k¼1

aNk x
k

" #
qðxÞ:
The aN are chosen such that the uncentered moments of pK equal the uncentered sample moments. In [30], it

is shown that such an estimator is the MLE for the true parameters a. Since cN can be computed from aN

via the linear transformation
cNj ¼
X4
k¼j

k

j

� �
aNk m

k�j;
it follows that cN is the MLE of h. It therefore follows from the fact that RN is of order jcN � hj2, that
ffiffiffiffi
N

p
RN

converges to zero in distribution. This completes the proof of the theorem. h

B.1. Comment on the central limit theorem result for non-Gaussianity

For the non-Gaussianity calculations, the statistics which are used do not depend upon the random

mean S1, but on the known mean s1. This leads to a much simpler calculation of the variance than in The-

orem B.4. Here, r2 = hChT, where h are the Lagrange multipliers for the third and fourth moment con-

straints, and the matrix C is the 2 · 2 covariance matrix given by the appropriate submatrix of R, in Eq.

(A.7) (See the comment at the end of Appendix A).
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[9] R. Abramov, G. Kovačič, A. Majda, Hamiltonian structure and statistically relevant conserved quantities for the truncated

Burgers–Hopf equation, Comm. Pure Appl. Math. 56 (2003) 1–46.

[10] A. Majda, R. Kleeman, D. Cai, A framework for predictability through relative entropy, Meth. Appl. Anal. 9 (2002) 425–444.

[11] L. Mead, N. Papanicolaou, Maximum entropy in the problem of moments, J. Math. Phys. 25 (1984) 2404–2417.

[12] R. Abramov, A. Majda, Quantifying uncertainty for non-Gaussian ensembles in complex systems, SIAM J. Sci. Comp. 26 (2004)

411–447.

[13] D. Cai, K. Haven, A. Majda, Quantifying predictability in a simple model with complex features, Stoch. Dynam. 4 (2004) 547–

569.

[14] R. Kleeman, A. Majda, Predictability in a model of geophysical turbulence, J. Atmos. Sci. (in press).

[15] E. Lorenz, K. Emanuel, Optimal sites for supplementary weather observations, J. Atmos. Sci. 55 (1998) 399–414.

[16] R. Abramov, A. Majda, R. Kleeman, Information theory and predictability for low frequency variability, J. Atmos. Sci. (in press).

[17] J. Anderson, W. Stern, Evaluating the potential predictive utility of ensemble forecasts, J. Climate 9 (1996) 260–269.

[18] Z. Toth, E. Kalnay, Ensemble forecasting at NMC: the generation of perturbations, Bull. Am. Meteorol. Soc. 74 (1993) 2317–

2330.

[19] T. Palmer, Predicting uncertainty in forecasts of weather and climate, Rep. Prog. Phys. 63 (2000) 71–116.

[20] M. Ehrendorfer, J. Tribbia, Optimal prediction of forecast error covariances through singular vectors, J. Atmos. Sci. 54 (1997)

286–313.

[21] E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, New York, 2003.

[22] T. Palmer, F. Molteni, R. Mureau, R. Buizza, P. Chapelet, J. Tribbia, Ensemble predictionProceedings of the Validation of

Models Over Europe, vol. 1, 1993, pp. 21–66.

[23] C. Reynolds, T. Palmer, Decaying singular vectors and their impact on analysis and forecast correction, J. Atmos. Sci. 55 (1998)

2576–2596.

[24] R. Buizza, T. Palmer, Impact of ensemble size on ensemble prediction, Mon. Weather Rev. 126 (1998) 2503–2518.

[25] E. Lorenz, Predictability: a problem partly solved, in: Proceedings of the Seminar on Predictability, ECMWF, Shinfield Park,

Reading, England, 1996.

[26] T. Cover, J. Thomas, Elements of Information Theory, Wiley, New York, 1991.

[27] R. Blahut, Principles and Practice of Information Theory, Addison-Wesley, Boston, 1987.

[28] D. Williams, Weighing the Odds: A Course in Probability and Statistics, Cambridge University Press, New York, 2001.

[29] R. Abramov, A unified computational framework for the moment-constrained maximum entropy principle and its practical

implementation, J. Comp. Phys. (submitted).

[30] R. Davidson, D. Solomon, Moment-type estimation in the exponential family, Commun. Stat. 3 (1974) 1101–1108.


	Quantifying predictability through information theory: small sample estimation in a non-Gaussian framework
	Introduction
	Measuring predictability through relative entropy
	Small sample variability
	Sample utility

	Perfect predictability methodology
	Adjusted moments methodology
	Adjusted moment algorithm

	Central limit theorem methodology
	EM central limit algorithm

	Application to the Lorenz  lsquo 96 model
	Summary
	Acknowledgments
	Details of adjusted moment methodology
	Comment on non-Gaussianity calculation

	Details of central limit methodology
	Comment on the central limit theorem result for non-Gaussianity

	References


